

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-5, May 2016

 30 www.ijeas.org

Abstract— This work splits into two parts; in the first we

present three actions and formulate them into GAP's codes, then

we compute and investigate the associated permutation

representations and its characters "permutation characters". In

the second part, with the aid of the Meataxe GAP's package, we

present a method and algorithm for investigating irreducible

and permutation characters for a specific kinds of finite groups.

Index Terms— Permutation Characters, MeatAxe, GAP

I. INTRODUCTION

 Recall that a representation of a group G on a set S is a

homomorphism , when S is a vector space

it's called linear representation and if S is just a set, called

permutation representation. defines a G-set structure on S

 by the map .Permutation

characters can be considered as powerful tool to extract

information about subgroups of a given group.

T. Breuer and G. Pfeiffer [3], describe three deferent methods

to compute all those characters of a finite group that have

certain properties of transitive permutation characters. In our

work, we present three actions mentioned in [2], and

formulate them into GAP's codes, then we compute and

investigate the associated permutation

representations and its permutation characters. Also, with the

aid of the Meataxe GAP's package [5], we present a method

and algorithm for investigating irreducible and permutation

characters for a specific kinds of finite groups.

II. PERMUTATION CHARACTERS

A. Actions under investigation

Let be the symmetric group on n symbols. Throughout this

work, we consider the following actions with the associated

permutation representations, provided that, they defined over

an arbitrary field K, see [2] for more details.

(I) The representation associated to the conjugacy action of

 on the subset defined by:

is called the

conjugacy representation of and will denoted by .

(II) Let be subgroup of , then act on

 by

denote by

 for the associated permutation representation.

(III) Let be a subgroup

of then is act on

 Saad Owaid Bedaiwi, Department of Mathematics , University of

Al-Mustansiryah/College of Science, Baghdad- Iraq.

Maroa Salah AL-shammery, Department of Mathematics , University of

Al-Mustansiryah/College of Science,Baghdad-Iraq.

 by

denote

by the associated permutation representation.

B. Definition [3]: Let G be any group act on a set S and is

the corresponding permutation representation. The map

defined by:

is called the permutation character of on .

C. Remark:

1. One can embed the symmetric group in the general

linear group by identify any permutation

 with the matrix:

Which means permuting rows of the identity matrix.

2. All our computations are made utilizing the group algebra

system GAP, see [5].

Our aim in this paper to compute the permutation character

induced from the permutation representations: conjugacy

representation , and , for a finite groups curry out

properties listed in tables below. Our computations are

divided into three cases:

Case I: Find the permutation character of a finite group

with properties as listed in table (1) via the conjugacy action

(I) on S1:=D, S2:= derived subgroup of D. K:= GF(p) (the

Galois field where p:= prime in particular p=7).

 # Constructing the finite groups with the required properties.

gap>alsma:=AllSmallGroups(n,certain properties as

specified);;

gap>iso:=IsomorphismPermGroup(alsma[i]); #for i in

[1..Size(alsma)]

gap> H:=Image(iso);D:=H;;

gap> gen:= GeneratorsOfGroup(D);;

gap> L:=List(gen,

>g->PermutationMat(g,n,GF(K)));;

gap> groumat:=GroupWithGenerators(L);

gap> S1:=groumat;;

gap> S2:=DerivedSubgroup(groumat);

Constructing the conjugacy action.

gap> action1:=function(a,g)

> local m;

> m:=List(a,x->Permuted(x,g));

> m:=Permuted(m,g^-1);

>m:=ImmutableMatrix(DefaultFieldOfMatrix(a),>m); # for

efficiency make compact

> return m;

> end;

function(a, g) ... end

Computing and Investigating Permutation Characters

Saad Owaid Bedaiwi, Maroa Salah AL-shammery

Computing and Investigating Permutation Characters

 31 www.ijeas.org

Computing the permutation character.

gap> PermutationCharacter(D,S1,action1);

gap> PermutationCharacter(D,S2,action1);

D. Example.

A finite group of order 6 which has the properties:

non-abelian, solvable and non-perfect.

gap>alsma:=AllSmallGroups(6,IsAbelian,

>false,IsSolvable,true,IsPerfect,false);;

gap>iso:=IsomorphismPermGroup(alsma[1]);

<action isomorphism>

gap> H:=Image(iso);;D:=H;;

gap> gen:= GeneratorsOfGroup(D);;

gap> L:=List(gen,

>g->PermutationMat(g,6,GF(7)));;

gap> groumat:=GroupWithGenerators(L);

<matrix group with 2 generators>

gap> S1:=groumat;;

gap> S2:=DerivedSubgroup(groumat);

<group of 6x6 matrices over GF(7)>

gap> PermutationCharacter(D,S1,action1);

Character(CharacterTable(Group([(1,2)(3,6)(4,5),(1,3,5)(2,4

,6)])),[6, 2, 3])

gap> PermutationCharacter(D,S2,action1);

Character(CharacterTable(Group([(1,2)(3,6)(4,5),(1,3,5)(2,4

,6)])),[3, 1, 0])

gap> perm1:=Action(D,S1,action1);;

gap># check if the action #is transitive, compute its

transitivity degree.

gap>IsTransitive(perm1); Transitivity(perm1);

false

0

gap> perm2:=Action(D,S2,action1);;

gap>IsTransitive(perm2); Transitivity(perm2);

true

3

If we run the above GAP code on different kinds of groups

having multiple properties, we have results displayed as

shown in table (1). Note that we denote by tran and No.tran to

check whether action1 is transitive, the degree of the

transitivity respectively.

Table (1)

Case II: Find the permutation character of a finite group

 with properties as listed in table (2) via the

permutation action (II) on S1:=D, S2:=H. K:= GF(p) .

Constructing the finite groups with the required properties.

gap>alsma:=AllSmallGroups(n,certain properties as

specified);;

gap>iso:=IsomorphismPermGroup(alsma[i]); #for i in

[1..Size(alsma)]

gap> H:=Image(iso);;

gap> D:=DirectProduct(H,H);; Size(D);

gap> gen:= GeneratorsOfGroup(D);;

gap>L:=List(gen,

>g->PermutationMat (g,Size(D);,GF(p)));;

gap> groumat:=GroupWithGenerators(L);

gap> S1:=groumat;;

gap> genH:= GeneratorsOfGroup(H);;

gap>LH:=List(genH,

>g->PermutationMat(g,Size(H),GF(p)));;

gap> groumatH:=GroupWithGenerators(LH);

gap> S2:=groumatH;;

gap> p1:=Projection(D,1); # decompose an element in its

parts

gap> p2:=Projection(D,2);

Constructing the permutation action (II).

gap> action2:=function(a,pair)

> local m,g;

>g:=Image(p1,pair);

> m:=List(a,x->Permuted(x,g));

> m:=Permuted(m,Image(p2,pair)^-1);

>m:=ImmutableMatrix(DefaultFieldOfMatrix(a)

>,m); # for efficiency compact

> return m;

> end;

function(a, pair) ... end

#Computing the permutation character.

gap> PermutationCharacter(D,S1,action2);

gap> PermutationCharacter(D,S2,action2);

gap> perm1:=Action(D,Omg1,action2);;

gap>IsTransitive(perm1); Transitivity(perm1);

gap> perm2:=Action(D,S2,action2);;

gap>IsTransitive(perm2); Transitivity(perm2);

If we run the above GAP code on different kinds of groups

having multiple properties, we have results displayed as

shown in table (2).

Table (2)

Case III: Find a permutation character of ,

where M and N are finite groups such that:

 , abelian, solvable and

non-perfect. The permutation action (III) on S:=D, K:=

GF(13) .

Constructing the finite group with the required properties.

gap>alsma:=AllSmallGroups(4,IsAbelian,true,IsSolvable,tru

e,

International Journal of Engineering and Applied Sciences (IJEAS)

 ISSN: 2394-3661, Volume-3, Issue-5, May 2016

 32 www.ijeas.org

>IsPerfect,false);

[<pc group of size 4 with 2 generators>, <pc group of size 4

with 2 generators>]

gap> iso:=IsomorphismPermGroup(alsma[2]);

[f1, f2] -> [(1,2), (3,4)]

gap> H:=Image(iso);;

gap> rows:=Tuples([0,1],4);;zerooone:=Tuples(rows,4);;

gap> m:=3;;stb:=Stabilizer(H,[1..m],OnSets);

Group([(1,2)])

gap> D:=DirectProduct(stb,stb);

Group([(1,2), (3,4)])

gap> p1:=Projection(G,1);

1st projection of Group([(1,2), (3,4)])

gap> p2:=Projection(G,2);

2nd projection of Group([(1,2), (3,4)])

Constructing the permutation action (III).

gap> gen:= GeneratorsOfGroup(D);;

gap>L:=List(gen,g- >PermutationMat(g,4,GF(13)));;

gap> genter:=GroupWithGenerators(L);

<matrix group with 2 generators>

gap> S:=genter;;

gap> perm:=Action(G,S,action2);

Group([(1,3)(2,4), (1,3)(2,4)])

gap> IsTransitive(perm); Transitivity(perm);

false

0

gap> PermutationCharacter(G,S,action2);

Character(CharacterTable(Group([(1,2), (3,4)])),[4, 0, 0, 4

])

III. Computing and investigating permutation characters

The permutation character of a transitive action is called a

transitive permutation character. With the aid of the GAP's

Package MeatAxe [5] we investigate the permutation

characters of some finite groups which are listed in table (3)

with their sizes and properties.

A. Lemma [6]: Let G be any group, if is a transitive

permutation character then:

a) is a character of .

b)

c) divides .

d) and integers .

e)

f) the multiplicity of as a constituent of is

at most .

g) if the order of does not divide

h) divides

i) .

The character with the properties of Lemma (2.1) is called a

possible permutation character of . The following is a

procedure to list possible permutation characters.

B. The Combinatorial Approach Method [7]:

This method builds up a reasonably small set of possible

permutation characters. The obtained set satisfies some of the

conditions stated in Lemma (2.1) which use the bounds on

coefficients of rationally irreducible characters given by

branch (f).

C. Algorithm [4]:

Let be the set of all

irreducible characters of a given group G, fix a degree that

divides By successively choosing coefficients for

 all coefficients vectors

with are generated that satisfy

and .

For each such vector, the character satisfies conditions (a),

(c), (e), and (f) of Lemma (2.1), and we can check the other

conditions. Moreover, every true permutation character of

of degree occurs among these.

In the table (3) the following notations are used: the numbers

of conjugacy classes of elements

, the number of rational classes ,

the number of possible permutation characters ,

the number of conjugacy classes of subgroups

where subgroup of , the numbers of

transitive permutation characters , the

structure description of the group G , the numbers

of absolutely irreducible characters of over a field

 the numbers of irreducible characters

of over .

Let us started with an example of a group of size 6, which is

non-abelian, solvable and non-perfect.

D. Example

gap> alsma:=AllSmallGroups(6,IsAbelian,

>false,IsSolvable,true,IsPerfect,false);

[<pc group of size 6 with 2 generators>]

gap> iso:=IsomorphismPermGroup(alsma[1]);;

gap> G:=Image(iso);;

gap> NrConjugacyClasses(G);

3

gap> RationalClasses(G);;Size(RationalClasses(G));

3

gap> tbl:=CharacterTable(G);;

gap> Display(tbl);

CT1

2 1 1 .

3 1 . 1

1a 2a 3a

2P 1a 1a 3a

3P 1a 2a 1a

Computing and Investigating Permutation Characters

 33 www.ijeas.org

X.1 1 1 1

X.2 1 -1 1

X.3 2 . -1

gap> PermChars(tbl);;Size(PermChars(tbl));

4

gap> ConjugacyClassesSubgroups(G);;

gap>Size(ConjugacyClassesSubgroups(G));

4

gap> tom:=TableOfMarks(G);;Display(tom);

1: 6

2: 3 1

3: 2 . 2

4: 1 1 1 1

gap> PermCharsTom(tbl,

>tom);;Size(PermCharsTom(tbl, tom));

4

gap> StructureDescription(G);

"S3"

Construct the permutation module of over where

.

gap> K:=GF(7);;module := PermutationGModule(G,K);

rec(dimension := 6, field := GF(7), generators := [<

immutable compressed matrix 6x6 over GF(7) >,

< immutable compressed matrix 6x6 over GF(7) >],

isMTXModule := true)

gap> COF := MTX.CollectedFactors(module);

[[rec(IsAbsolutelyIrreducible := true, IsIrreducible:=

true,dimension := 1,field := GF(7),generators := [[[Z(7)^0]

], [[Z(7)^0]]], isMTXModule := true,smashMeataxe := rec(

algebraElement := [[[1, 2], [1, 2]], [Z(7)^3, Z(7)^5,

Z(7)^2, Z(7)^2]],algebraElementMatrix:=[[Z(7)^0]

],characteristicPolynomial := x_1-Z(7)^0,charpolFactors :=

x_1-Z(7)^0, degreeFieldExt := 1, ndimFlag := 1,

nullspaceVector := [Z(7)^0])), 1],[rec(IsIrreducible :=

true, dimension := 1, field := GF(7), generators := [[[Z(7)^3

]], [[Z(7)^0]]],isMTXModule := true,smashMeataxe :=

rec(algebraElement := [[[1, 2], [3, 1]], [Z(7)^3, Z(7),

0*Z(7), Z(7)^3]],algebraElementMatrix := [[Z(7)]],

characteristicPolynomial := x_1+Z(7)^4,charpolFactors :=

x_1+Z(7)^4, ndimFlag := 1, nullspaceVector := [Z(7)^0])),

1],[rec(IsAbsolutelyIrreducible := true,IsIrreducible := true,

dimension := 2, field := GF(7),generators := [[[Z(7)^0,

0*Z(7)], [Z(7)^3, Z(7)^3]], [[0*Z(7), Z(7)^0], [Z(7)^3,

Z(7)^3]]],isMTXModule := true, smashMeataxe := rec(

algebraElement := [[[2, 1]], [Z(7)^0, Z(7)^0, Z(7)^3]

],algebraElementMatrix := [[Z(7)^2, Z(7)^2], [Z(7)^5,

Z(7)^4]],characteristicPolynomial := x_1^2+x_1+Z(7)^5,

charpolFactors := x_1+Z(7)^2, degreeFieldExt := 1,ndimFlag

:= 1, nullspaceVector := [Z(7)^4, Z(7)^0])), 2]]

gap> List(cf,

>x -> MTX.IsAbsolutelyIrreducible(x[1]));

[true,true, true]

gap> List(cf, x -> MTX.IsIrreducible(x[1]));

 [true, true, true]

Table (3)

APPENDIX

 The Meataxe algorithm

The Meat-axe is a fundamental tool in computational

representation theory, most often used to test irreducibility of

a finite matrix group or algebra, and in the case of reducibility

to construct an invariant subspace. A number of versions have

been described in the literature, first by R. Parker [7] in 1984

and later by other [8,9] The implementations of the Meat-axe

in the computer algebra systems GAP and MAGMA [11] are

based on the version of D. F. Holt and S. Rees [10].

Algorithm:

We assume that is a field and is a matrix

representation with representation module .

Input: An -dimensional matrix representation of in

terms of matrices

 for a generating

system of

.

Output: Either the information that is irreducible, or

matrix representations of on an -submodule and on

the factor module given by matrices for the generating

system

REFERENCES

[1] Alperin J. L., Bell R. B. Groups and representations. – Springer Science

& Business Media, 2012. – Т. 162.

[2] Cherniavsky Y., Bagno E. Permutation representations on invertible

matrices // Linear Algebra and its Applications. – 2004. – С. 494 –518.

[3] Breuer T., Pfeiffer G. Finding possible permutation characters //Journal

of Symbolic Computation. – 1998. – Т. 26. – №. 3. – С. 343-354.

[4] Lux K., Pahlings H. Representations of groups a computational approach.

– Cambridge University Press, 2010. – Т. 124.

[5] The GAP Group, GAP -- Groups, Algorithms, and Programming, Version

4.7.9; 2015. (http://www.gap-system.org).

[6] Isaacs I. M. Character theory of finite groups. – Courier Corporation,

2013.

[7] Parker R. A. The computer calculation of modular characters (the

meat-axe) //Computational Group Theory, Academic Press, London. –

1984. – С. 267-274.

[8] Ivanyos G., Lux K. Treating the exceptional cases of the MeatAxe

//Experimental Mathematics. – 2000. – Т. 9. – №. 3. – С. 373-381.

[9] Neumann P. M., Praeger C. E. Cyclic matrices and the Meataxe //Groups

and Computations. – 2001. – Т. 3. – С. 291-300.

[10] Holt D. F., Rees S. Testing modules for irreducibility //Journal of the

Australian Mathematical Society (Series A). – 1994. – Т. 57. – №. 01. –

С. 1-16.

[11] Bosma W., Cannon J., Playoust C. The Magma algebra system I: The

user language //Journal of Symbolic Computation. – 1997. – Т. 24. – №.

3. – С. 235-265.

