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 

Abstract— This work splits into two parts; in the first we 

present three actions and formulate them into GAP's codes, then 

we compute and investigate the associated permutation 

representations and its characters "permutation characters". In 

the second part, with the aid of the Meataxe GAP's package, we 

present a method and algorithm for investigating irreducible 

and permutation characters for a specific kinds of finite groups. 

 

Index Terms— Permutation Characters, MeatAxe, GAP 

 

I. INTRODUCTION 

  Recall that a representation of a group G on a set S is a 

homomorphism  , when S is a vector space 

it's called linear representation and if S is just a set, called 

permutation representation.  defines a G-set structure on S 

 by the map .Permutation 

characters can be considered as powerful tool to extract 

information about subgroups of a given group. 

T.  Breuer and G. Pfeiffer [3], describe three deferent methods 

to compute all those characters of a finite group that have 

certain properties of transitive permutation characters. In our 

work, we present three actions mentioned in [2], and 

formulate them into GAP's codes, then we compute and 

investigate the associated permutation  

representations and its permutation characters. Also, with the 

aid of the Meataxe GAP's package [5], we present a method 

and algorithm for investigating irreducible and permutation 

characters for a specific kinds of finite groups. 

  

II. PERMUTATION CHARACTERS 

A. Actions under investigation 

Let  be the symmetric group on n symbols. Throughout this 

work, we consider the following actions with the associated 

permutation representations, provided that, they defined over 

an arbitrary field K, see [2] for more details. 

(I) The representation associated to the conjugacy action of 

  on the subset  defined by: 

is called the 

conjugacy representation of  and will denoted by  . 

(II) Let be subgroup of , then   act on 

 by 

denote by 

 for the associated permutation representation. 

(III) Let be a subgroup 

of  then  is act on 
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 by 

denote 

by  the associated permutation representation. 

B. Definition [3]: Let G be any group act on a set S and  is 

the corresponding permutation representation. The map 

defined by: 

is called the permutation character of  on . 

C. Remark: 

1. One can embed the symmetric group  in the general 

linear group  by identify any permutation 

 with the matrix: 

 
Which means permuting rows of the identity matrix. 

2. All our computations are made utilizing the group algebra 

system GAP, see [5]. 

Our aim in this paper to compute the permutation character 

induced from the permutation representations: conjugacy 

representation   ,  and   , for a finite groups curry out 

properties listed in tables below. Our computations are 

divided into three cases: 

Case I: Find the permutation character of a finite group  

with properties as listed in table (1) via the conjugacy action 

(I) on  S1:=D, S2:= derived subgroup of D. K:= GF(p) (the 

Galois field where p:= prime in particular p=7 ). 

 # Constructing the finite groups with the required properties. 

 

gap>alsma:=AllSmallGroups(n,certain properties as 

specified);; 

gap>iso:=IsomorphismPermGroup(alsma[i]); #for i in 

[1..Size(alsma)] 

gap> H:=Image(iso);D:=H;; 

gap> gen:= GeneratorsOfGroup(D);; 

gap> L:=List(gen, 

>g->PermutationMat(g,n,GF(K)));; 

gap> groumat:=GroupWithGenerators(L); 

gap> S1:=groumat;; 

gap> S2:=DerivedSubgroup(groumat); 

  

#  Constructing the conjugacy action. 

 

gap> action1:=function(a,g) 

>  local m; 

> m:=List(a,x->Permuted(x,g)); 

>  m:=Permuted(m,g^-1); 

>m:=ImmutableMatrix(DefaultFieldOfMatrix(a),>m); # for 

efficiency make compact 

>  return m; 

>  end; 

function( a, g ) ... end 
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#  Computing the permutation character. 

 

gap> PermutationCharacter(D,S1,action1); 

gap> PermutationCharacter(D,S2,action1); 

 

D. Example.  

 

A finite group of order 6 which has the properties: 

non-abelian, solvable and non-perfect. 

 

gap>alsma:=AllSmallGroups(6,IsAbelian, 

>false,IsSolvable,true,IsPerfect,false);; 

gap>iso:=IsomorphismPermGroup(alsma[1]); 

<action isomorphism>  

gap> H:=Image(iso);;D:=H;; 

gap> gen:= GeneratorsOfGroup(D);; 

gap> L:=List(gen, 

>g->PermutationMat(g,6,GF(7)));; 

gap> groumat:=GroupWithGenerators(L); 

<matrix group with 2 generators> 

gap> S1:=groumat;; 

gap> S2:=DerivedSubgroup(groumat); 

<group of 6x6 matrices over GF(7)> 

gap> PermutationCharacter(D,S1,action1); 

Character(CharacterTable(Group([(1,2)(3,6)(4,5),(1,3,5)(2,4

,6) ])),[ 6, 2, 3 ] ) 

gap> PermutationCharacter(D,S2,action1); 

Character(CharacterTable(Group([(1,2)(3,6)(4,5),(1,3,5)(2,4

,6) ])),[ 3, 1, 0 ] ) 

gap> perm1:=Action(D,S1,action1);; 

gap># check if the action #is transitive, compute its 

transitivity degree. 

gap>IsTransitive(perm1); Transitivity(perm1); 

false 

0 

gap> perm2:=Action(D,S2,action1);; 

gap>IsTransitive(perm2); Transitivity(perm2); 

true 

3 

If we run the above GAP code on different kinds of groups 

having multiple properties, we have results displayed as 

shown in table (1). Note that we denote by tran and No.tran to 

check whether action1 is transitive, the degree of the 

transitivity respectively. 

 

Table (1) 

 
Case II: Find the permutation character of a finite group 

 with properties as listed in table (2) via the 

permutation action (II) on  S1:=D, S2:=H. K:= GF(p) . 

# Constructing the finite groups with the required properties. 

gap>alsma:=AllSmallGroups(n,certain properties as 

specified);; 

gap>iso:=IsomorphismPermGroup(alsma[i]); #for i in 

[1..Size(alsma)] 

gap> H:=Image(iso);; 

gap> D:=DirectProduct(H,H);; Size(D); 

gap> gen:= GeneratorsOfGroup(D);; 

gap>L:=List(gen, 

>g->PermutationMat (g,Size(D);,GF(p)));; 

gap> groumat:=GroupWithGenerators(L); 

gap> S1:=groumat;; 

gap> genH:= GeneratorsOfGroup(H);; 

gap>LH:=List(genH, 

>g->PermutationMat(g,Size(H),GF(p)));; 

gap> groumatH:=GroupWithGenerators(LH); 

gap> S2:=groumatH;; 

gap> p1:=Projection(D,1); # decompose an element in its 

parts 

gap> p2:=Projection(D,2); 

 

# Constructing the permutation action (II). 

 

gap> action2:=function(a,pair) 

> local m,g; 

>g:=Image(p1,pair); 

>   m:=List(a,x->Permuted(x,g)); 

>   m:=Permuted(m,Image(p2,pair)^-1); 

>m:=ImmutableMatrix(DefaultFieldOfMatrix(a) 

>,m); # for efficiency compact 

>   return m; 

> end; 

function( a, pair ) ... end 

 

#Computing the permutation character. 

 

gap> PermutationCharacter(D,S1,action2); 

gap> PermutationCharacter(D,S2,action2); 

gap> perm1:=Action(D,Omg1,action2);; 

gap>IsTransitive(perm1); Transitivity(perm1); 

gap> perm2:=Action(D,S2,action2);; 

gap>IsTransitive(perm2); Transitivity(perm2); 

 

If we run the above GAP code on different kinds of groups 

having multiple properties, we have results displayed as 

shown in table (2).  

 

 

Table (2) 

 

Case III: Find a permutation character of  , 

where M and N are finite groups such that: 

 , abelian, solvable and 

non-perfect. The permutation action (III)  on S:=D, K:= 

GF(13) . 

# Constructing the finite group with the required properties. 

gap>alsma:=AllSmallGroups(4,IsAbelian,true,IsSolvable,tru

e, 
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>IsPerfect,false); 

[ <pc group of size 4 with 2 generators>, <pc group of size 4 

with 2 generators> ] 

gap> iso:=IsomorphismPermGroup(alsma[2]); 

[ f1, f2 ] -> [ (1,2), (3,4) ] 

gap> H:=Image(iso);; 

gap> rows:=Tuples([0,1],4);;zerooone:=Tuples(rows,4);; 

gap> m:=3;;stb:=Stabilizer(H,[1..m],OnSets); 

Group([ (1,2) ]) 

gap> D:=DirectProduct(stb,stb); 

Group([ (1,2), (3,4) ]) 

gap> p1:=Projection(G,1); 

1st projection of Group([ (1,2), (3,4) ]) 

gap> p2:=Projection(G,2); 

2nd projection of Group([ (1,2), (3,4) ]) 

 

# Constructing the permutation action (III). 

 

gap> gen:= GeneratorsOfGroup(D);; 

gap>L:=List(gen,g-  >PermutationMat(g,4,GF(13)));; 

gap> genter:=GroupWithGenerators(L); 

<matrix group with 2 generators> 

gap> S:=genter;; 

gap> perm:=Action(G,S,action2); 

Group([ (1,3)(2,4), (1,3)(2,4) ]) 

gap> IsTransitive(perm); Transitivity(perm); 

false 

0 

gap> PermutationCharacter(G,S,action2); 

Character( CharacterTable( Group([ (1,2), (3,4) ])),[ 4, 0, 0, 4 

] ) 

 

III. Computing and investigating permutation characters 

The permutation character of a transitive action is called a 

transitive permutation character. With the aid of the GAP's 

Package MeatAxe [5] we investigate the permutation 

characters of some finite groups which are listed in table (3) 

with their sizes and properties. 

 

A. Lemma [6]: Let G be any group, if  is a transitive 

permutation character then:  

a)  is a character of . 

b)  

c)  divides . 

d)  and integers . 

e)  

f)  the multiplicity of   as a constituent of  is 

at most  . 

g)  if the order of  does not divide  

h)  divides  

i) . 

The character  with the properties of Lemma (2.1) is called a 

possible permutation character of . The following is a 

procedure to list possible permutation characters. 

 

B.  The Combinatorial Approach Method [7]: 

This method builds up a reasonably small set of possible 

permutation characters. The obtained set satisfies some of the 

conditions stated in Lemma (2.1) which use the bounds on 

coefficients of rationally irreducible characters given by 

branch (f).  

 

C. Algorithm [4]: 

Let  be the set of all 

irreducible characters of a given group G, fix a degree  that 

divides  By successively choosing coefficients  for 

 all coefficients vectors  

with  are generated that satisfy 

 

 
and   . 

For each such vector, the character satisfies conditions (a), 

(c), (e), and (f) of Lemma (2.1), and we can check the other 

conditions.  Moreover, every true permutation character of 

of degree  occurs among these. 

In the table (3) the following notations are used:  the numbers 

of conjugacy classes of elements  

 

, the number of rational classes , 

the number of possible permutation characters , 

the number of conjugacy classes of subgroups 

where  subgroup of , the numbers of 

transitive permutation characters , the 

structure description of the group G  , the numbers 

of absolutely irreducible characters of over a field  

 the numbers of irreducible characters 

of over   . 

Let us started with an example of a group of size 6, which is 

non-abelian, solvable and non-perfect. 

 

D. Example 

 

gap> alsma:=AllSmallGroups(6,IsAbelian, 

>false,IsSolvable,true,IsPerfect,false); 

[ <pc group of size 6 with 2 generators> ] 

gap> iso:=IsomorphismPermGroup(alsma[1]);; 

gap> G:=Image(iso);; 

gap> NrConjugacyClasses(G); 

3 

gap> RationalClasses( G );;Size(RationalClasses( G )); 

3 

gap> tbl:=CharacterTable(G);; 

gap> Display(tbl); 

CT1 

 

2  1  1  . 

3  1  .  1 

 

1a 2a 3a 

2P 1a 1a 3a 

3P 1a 2a 1a 
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X.1     1  1  1 

X.2     1 -1  1 

X.3     2  . -1 

gap> PermChars( tbl);;Size(PermChars( tbl)); 

4 

gap> ConjugacyClassesSubgroups(G);; 

gap>Size(ConjugacyClassesSubgroups( G )); 

4 

gap> tom:=TableOfMarks(G);;Display(tom); 

1:  6 

2:  3 1 

3:  2 . 2 

4:  1 1 1 1 

 

gap> PermCharsTom( tbl,  

>tom );;Size(PermCharsTom( tbl, tom )); 

4 

gap> StructureDescription( G ); 

"S3" 

Construct the permutation module of  over  where 

. 

 

gap> K:=GF(7);;module := PermutationGModule(G,K); 

rec( dimension := 6, field := GF(7), generators := [ < 

immutable compressed matrix 6x6 over GF(7) >, 

< immutable compressed matrix 6x6 over GF(7) > ], 

isMTXModule := true ) 

gap> COF := MTX.CollectedFactors( module ); 

[ [ rec( IsAbsolutelyIrreducible := true, IsIrreducible:= 

true,dimension := 1,field := GF(7),generators := [ [ [ Z(7)^0 ] 

], [ [ Z(7)^0 ] ] ], isMTXModule := true,smashMeataxe := rec( 

algebraElement := [ [ [ 1, 2 ], [ 1, 2 ] ], [ Z(7)^3, Z(7)^5, 

Z(7)^2, Z(7)^2 ] ],algebraElementMatrix:=[[Z(7)^0] 

],characteristicPolynomial := x_1-Z(7)^0,charpolFactors := 

x_1-Z(7)^0, degreeFieldExt := 1, ndimFlag := 1, 

nullspaceVector := [ Z(7)^0 ] ) ), 1 ],[ rec( IsIrreducible := 

true, dimension := 1, field := GF(7), generators := [ [ [ Z(7)^3 

] ], [ [ Z(7)^0 ] ] ],isMTXModule := true,smashMeataxe := 

rec( algebraElement := [ [ [ 1, 2 ], [ 3, 1 ] ], [ Z(7)^3, Z(7), 

0*Z(7), Z(7)^3 ] ],algebraElementMatrix := [[ Z(7) ] ], 

characteristicPolynomial := x_1+Z(7)^4,charpolFactors := 

x_1+Z(7)^4, ndimFlag := 1, nullspaceVector := [ Z(7)^0 ] ) ), 

1 ],[ rec( IsAbsolutelyIrreducible := true,IsIrreducible := true, 

dimension := 2, field := GF(7),generators := [ [ [ Z(7)^0, 

0*Z(7) ], [ Z(7)^3, Z(7)^3 ] ], [ [ 0*Z(7), Z(7)^0 ], [ Z(7)^3, 

Z(7)^3 ] ] ],isMTXModule := true, smashMeataxe := rec( 

algebraElement := [ [ [ 2, 1 ] ], [ Z(7)^0, Z(7)^0, Z(7)^3 ] 

],algebraElementMatrix := [ [ Z(7)^2, Z(7)^2 ], [ Z(7)^5, 

Z(7)^4 ] ],characteristicPolynomial := x_1^2+x_1+Z(7)^5, 

charpolFactors := x_1+Z(7)^2, degreeFieldExt := 1,ndimFlag 

:= 1, nullspaceVector := [ Z(7)^4, Z(7)^0 ] ) ), 2 ] ] 

gap> List( cf,  

>x -> MTX.IsAbsolutelyIrreducible(x[1]) ); 

[ true,true, true] 

gap> List( cf, x -> MTX.IsIrreducible(x[1]) ); 

 [ true, true, true ] 

 

Table (3) 

 

APPENDIX 

 The Meataxe algorithm 

The Meat-axe is a fundamental tool in computational 

representation theory, most often used to test irreducibility of 

a finite matrix group or algebra, and in the case of reducibility 

to construct an invariant subspace. A number of versions have 

been described in the literature, first by R. Parker [7] in 1984 

and later by other [8,9]  The implementations of the Meat-axe 

in the computer algebra systems GAP and MAGMA [11] are 

based on the version of D. F. Holt and S. Rees [10]. 

Algorithm: 

 

We assume that  is a field and  is a  matrix 

representation with representation module . 

Input: An -dimensional matrix representation  of  in 

terms of matrices 

  for a generating 

system  of  

. 

Output: Either the information that  is irreducible, or 

matrix representations of  on an -submodule  and on 

the factor module  given by matrices for the generating 

system   
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